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ABSTRACT Stress intensity factors for quarter-elliptical corner cracks emanating from a circular hole are determined
using a 3-D weight function method combined with a 3-D finite element method. The 3-D finite element method is used
to analyze uncracked configuration and provide stress distribution in the region where crack is to occur. Using this stress
distribution as input, the 3-D weight function method is used to determine stress intensity factors. Three different loading
conditions, i.e. remote tension, remote bending and wedge loading, are considered for a wide range in geometrical
parameters. The significance in using 3-D uncracked stress distribution and the difference between single and double
corner cracks are studied. Typical crack opening displacements are also provided. Comparisons are made with solutions

available in the literature.

1. INTRODUCTION

The weight function method in linear elastic fracture mechanics originated from
Bueckner’s pioneering work [1], but the widespread acceptance of the method is largely
attributed to the discussion and extension made by Rice [2]. The attraction of the method is the
separation of the geometry property of a cracked configuration from the applied load. The theory
[1,2] shows that once the weight function is known for a cracked configuration, stress intensity
factors for the cracked configuration under any applied load can be obtained by a quadrature of
the product of the weight function and the stress distribution induced by the applied load acting

on the same geometrical configuration but without a crack (also designated as uncracked stress



distribution). It is this feature that gives the weight function method an advantage in dealing with
various complex loading conditions. Indeed, extensive research and applications have been
performed on the weight function method, and accurate weight functions for various 2-D crack
problems of practical interest are now available (see, for example, Wu and Carlsson [3]). For
3-D crack problems, however, this is not the case. The general 3-D weight function theory has
long been established independently by Rice [2] and Bueckner [4]. On one hand, this general
theory is applicable to any 3-D crack problems and has much wider use than determination of
stress intensity factors under various loading conditions [5]. On the other hand, the determination
of the 3-D weight functions based on this general theory requires considerable effort, because
the weight functions can only be determined by various sophisticated numerical methods, such
as the boundary element method [6], the 3-D finite element method [7,8], and the 3-D finite
element alternating method [9], with the exception of half-plane cracks or a circular crack in an
infinite domain, and cracks perturbed from these [10,11].

If our purpose is to determine stress intensity factors for plane cracks with elliptic-arc
front under various loading conditions, as is often the case, alternative approaches in developing
3-D weight function methods are available, which involve further assumptions. The most popular
approach, as evidenced by a vast literature, is to adopt the "root mean square” concept proposed
by Besuner [12], and often uses Newman and Raju’s stress intensity factor equations [13,14] as
the reference solutions in developing weight functions. Some typical work can be found in [15-
19]. This approach, although very useful, only produces averaged stress intensity factors around
the ends of the two axes of an elliptic crack, and can not reflect variations of stress intensity
factors along the crack front.

A different approach has been developed and applied to several typical cracked
configurations by the present authors [20-27]. The accuracy of the method has been established
through comparison with exact or well accepted numerical solutions, such as those in [13,28-33].
In addition to its accuracy and efficiency, the 3-D weight function method [20] has two other

advantages: (i) it gives the distribution of stress intensity factors along the crack front and (i)
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in many cases it does not require any reference solutions for the 3-D cracks in question. This
latter advantage allows the method to produce independent solutions [20-23], and to solve
problems for which no solutions exist, as shown in [24-26]. However, the weight functions in
these previous work are limited to relative crack sizes, a/t<0.6.

The other element needed in weight function methods is the uncracked stress distribution
at the crack location induced by the applied load. This information is often readily obtainable
using 2-D theory of elasticity. However, special attention is needed for cracks emanating from
stress concentrations, such as a hole or a notch. In such cases, stresses obtained from 2-D theory
of elasticity may not represent satisfactorily the true stress distribution, if the hole or notch
radius is small compared with the plate thickness. This effect is particularly significant for small
cracks, and hence could have significant influence on the predicted fatigue crack life. Although
this issue is important, it has not been properly addressed in the literature. There are 3-D
solutions for stress concentration factors [34,35] which are helpful in analyzing fatigue crack
initiations, but weight function methods require knowledge of the complete stress distribution
in the crack region.

The problems to be considered in this work involve both single or double corner cracks
emanating from a circular hole in a wide, finite thickness plate. This crack configuration
represents one of the most common sources of failures in aircraft structures, and has received
considerable attention in the literature. Using a 3-D finite element method, Hechmer and Bloom
[36] analyzed double corner cracks under remote tension. The most refined 3-D finite element
analysis and extensive solutions were provided by Raju and Newman [28] for double corner
cracks under remote tension, remote bending and wedge loading in the hole. Grandt and
Kullgren [37] obtained a generalized solution for a single corner crack under crack face pressure
loading by a finite element alternating method. Using an improved finite element alternating
method, Nishioka and Atluri [38] considered double corner cracks. The weight function method
has also been used to provide additional solutions for remote tension [23] by using 2-D

uncracked stress distribution.



The present work uses a combined approach of the 3-D weight function method and the
3-D finite element method in analyzing the corner cracked hole. The 3-D finite element method
is used to analyze the uncracked hole under remote tension, remote bending, and wedge loading
in the hole. The uncracked normal stress distribution under these three load conditions are
determined for hole-radius-to-plate-thickness ratios of r/t=0.1, 0.25, 0.5, 1, 1.5 and 2.5. To
facilitate the weight function application, these uncracked stress distributions are then fitted by
polynomials. The 3-D weight function method [20] is first extended to cover a relative crack
depth a/t<0.9, and to consider stress variations in the plate thickness direction. Then, with the
uncracked stress distribution provided by the 3-D finite element method, the 3-D weight function
method is used to determine stress intensity factors for corner cracked holes under remote
tension, remote bending and wedge loading in the hole. The geometrical parameters considered
in this work are: r/t=0.1, 0.25,0.5, 1, 1.5 and 2.5; a/c=0.2, 0.4, 1 and 2; a/t=0.01, 0.1, 0.2,
0.3,0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, within the limit of crack-length-to-hole-radius ratio of 2.
The importance for using 3-D stress solutions in determining stress intensity factors by weight
function methods is investigated. Also studied is the difference in stress intensity factors between

single and double corner cracks. Some typical crack face displacements are provided as well.

NOMENCLATURE

a, ¢ = semi-axes of a quarter-elliptical crack
a,, ¢, = crack length for a- and c-slices

b = half plate width

COD = dimensionless crack face displacement
E = elastic modulus

E,, E. = elastic modulus for a- and c-slices

E, = elastic modulus for spring slices

F

dimensionless stress intensity factor

h = half plate height




k,, k. = stretching stiffness of restraining springs

K = stress intensity factor

K,, K. = stress intensity factors for a- and c-slices
P(x,y) = coupling force on the crack surface

Q = shape factor of an ellipse

r = hole radius

1,, I, = dimensionless restraining area for a- and c-slices
R,, R, = restraining area for a- and c-slices

t = plate thickness

T = transition factor

V = crack face displacement

V., V. = crack face displacement for a- and c-slices
W,, W. = weight functions for a- and c-slices

X, ¥, z = Cartesian coordinates

7 = an interpolation function at the free surface

v = Poisson ratio

¢ = remote tensile stress

o(x,y) = stress on the crack surface

o, = a reference stress

¢ = parametric angle of an elliptical crack

® = the complete elliptic integral of the second kind

2. THE 3-D WEIGHT FUNCTION METHOD

Instead of starting from the general 3-D weight function theory [2,4], another form for
the 3-D weight function method [20] was developed using the slice synthesis model [39-41], the

general weight function expressions for 2-D crack problems [42,43], and the exact solutions for

a pressurized embedded elliptical crack in an infinite body [44]. The basic idea of this approach
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is to decompose a 3-D cracked body into two types of orthogonal slices of infinitesimal
thickness. Each slice is assumed to be in a generalized plane stress state while containing a
through-thickness crack. The properties of the 3-D cracked body are built into the slices by
considering two effects: (i) the mechanical coupling between adjacent slices and (ii) the
restraining effect of the uncracked area on the cracked slices. The 3-D property of a plane crack
with elliptic-arc front is further assumed to be divisible into two parts: (1) the fundamental part
that is common to all such cracks regardless of (a) their configuration (corner crack, surface
crack or embedded crack), (b) the relative size of the crack with respect to the width or
thickness) or (c) loading condition and (2) the particular part that depends on the given
configurations and loading conditions. The fundamental part of the solutions is obtained by using
the known exact stress and crack face displacement solutions for a pressurized embedded
elliptical crack in an infinite body [44]. This is one of two reasons why, in many cases, the
present method does not require any reference solutions for the 3-D crack in question. Let us
elaborate on the method by considering the corner cracked hole in question. For brevity, we will
focus on double corner cracks in describing the method.
2.1 Modeling and the Weight Functions

Figure 1 shows the configuration to be considered. Although remote tension is shown,
any other mode I loading can be analyzed. This cracked body is decomposed, as per Fig.2, into
two types of orthogonal slices of infinitesimal thickness. Each slice is assumed to be in a
generalized plane stress state. The symbols R, and R, in Fig.2, defined as the restraining areas,
represent the uncracked area outside the sliced region. The slices parallel to the a-axis of the
crack are designated as a-slices and those parallel to the c-axis as c-slices. The subscripts a or
c are used to denote quantities corresponding to a- or c-slices. Note that a-slices correspond to
edge-cracked configurations whereas c-slices correspond to center crack configurations as shown
in Figs.3(a) and 3(b), respectively. Referring to Figs.3, another distinction needs to be made:
basic slices and spring slices. The a-slice in Fig.3(a) is designated as a basic slice, because the

thin slice is subjected to the same applied load o, and has the same elastic modulus, E, as the
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3-D cracked body. The c-slice in Fig.3(b) is called a spring slice, because it is subjected to no
externally applied load, and has a different elastic modulus, E;, which will be described latter.
The loading of the spring slices in Fig.3(b) is such that the superposition of the two kinds of
slices satisfies the loading condition of the original 3-D crack problem. For now, note that in
Figs.3 the springs are placed on the slices’ boundaries towards which the crack extends and the
distributed forces, P(x,y), are applied to the crack faces. These two elements simulate,
respectively, the restraining effect due to the uncracked area R;, and the mechanical coupling
between the adjacent basic slices due to the internal stress present on the free-body diagram of
an a-slice. P(x,y) is the z-component of the uncracked stress induced by all the internal coupling
stresses acting on an a-slice’s surface. It is noted that representing the internal coupling stress
by P(x,y) is sufficient, involving no assumption, and is justified by the superposition principle.
The other components of the uncracked stress, which are not normal to the crack surface, play
no role in the model for mode I crack problems and can be discarded. Thus, all the 3-D
properties necessary for considering mode I crack problems have, in principle, been incorporated
into the slice models and hence their effects can be represented.

Before determining P(x,y) (the load aspect) we need to consider the weight function (the
geometry aspect). The slices shown in Figs.3 have elastic boundary constraints exerted by
constraining springs with stiffness k;, (i=a,c). To represent the constraining effect of the
uncracked area outside the sliced region, the stiffness k; is a function of restraining area R,,

(i=a,c). Using a properly non-dimensionalized form for R,, we have

R

ra=__£=2£(2_5££_1)£ (1a)
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R
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in which r,, (i=a,c), varies from 0 to o. In general, k;, as a function of r;, can not be
determined without embarking upon 3-D analysis. However, the following judgement can be
made: k; is a monotonic function of r,. That is, k>0 as r,~0 (which is the case shown in Fig.4)
and k—~oo as r,~oo (which is the case shown in Fig.5). Thus, these two limiting conditions serve
as the lower and the upper bounds for the slices in Figs.3. Based on these bounding conditions

we can construct the weight functions for the slices shown in Fig.3 as following,

Wi = Wi ™ + Tifr:)(Wap: 7 - Wyp: ™) 2

where W, (i=a,c) is the weight function for the slices in Fig.3. Wyp; ™ and W,p; ™ are the
weight functions for the 2-D cracks with fixed boundary condition (Fig.5) and with free
boundary condition (Fig.4), respectively. T(r;), designated as the transition factor, is an
unknown function of restraining area, r,, which satisfies T;(o0)=0, and T;(0)=1. Although eq.(2)
reduces the determination of the weight functions for the slices in Fig.3 to the determination of
the transition factor Ti(r,), as was done for an embedded elliptical crack [20], it will not change
the fact that in general it can not be determined without 3-D analysis. However, eq.(2) does tell
us that if T(r)=0, the first term W,y; ™ alone can be used as W,. Mathematically, this
corresponds to r;= oo, situations that infinite width and/or thickness dimensions will result in.
Physically, the situations where W,,; ™ can be used as W, are not limited to the cases of
;= o0. W,,; ™ applies to a wide range of cases in which the presence of a crack will not cause
localized deformation on the boundary surfaces where the constraining springs of the slices act.
Previous applications [20,22,23,27] based on W,5; ™ have shown very good agreement with
finite element solutions for a/t<0.5 and finite but large r,. Other cases where W,y ; ™ is used
as W, are situations where the problems have symmetric surfaces that can be taken as one of the
slice’s boundaries; the constraining springs are replaced by rigid springs. Various problems of

this type were solved in [24-26].




We consider the case of infinite width, that is (c+r)/b=0. The particular weight

functions W, for our case are

W,=W,(a,y) (3a)

W,=W,(c,x) (3b)

where W, is the weight function for double edge cracks and W, is the weight function for two
symmetric cracks emanating from a hole in an infinite plate. W, used in previous work was
limited to a/t<0.6. It is extended to a/t<0.9 in this work by using Wu and Carlsson’s recent
work [3], and is given in Appendix A of this paper.

2.2 Solution Procedures

As mentioned earlier, the solution to a 3-D crack problem is divided into two parts: the
fundamental part, and the particular part. These will be described in the following section.
2.2.1 Fundamental Part

This part of the solutions provide the fundamental relations between (a) the elastic moduli of
basic slices and spring slices, (b) the stress intensity factors for a 3-D cracked body and the
slices and (c) crack face displacements for a 3-D cracked body and the slices. The first relation
determines the elastic modulus of the spring slices. The second and the third relations allow the
determination of stress intensity factors and crack face displacements for a 3-D cracked body by
using the stress intensity factors and crack face displacements for the slices. These relations have
been obtained [20] by calibrating the method against the exact solutions for stress intensity
factors and crack face displacements of a pressurized embedded elliptical crack in an infinite

body [44]. These relations [20] are given below with brief discussions.

2.2.1.1 Elastic Modulus of Spring Slices



The spring slices are devised to represent the mechanical coupling between adjacent basic
slices, which is modeled by springs. While the spring force is a function of applied loads and
configuration parameters, the stiffness of the spring can be reasonably assumed to be a function

of material and the crack aspect ratio only. The result is

E
3o ® _ DL gfe<t (4a)
E l—vz a
E
5. % ¢ alc>1 (4b)
E 1—\;2 a

where » is the Poisson’s ratio and & is the complete elliptic integral of the second kind.

2.2.1.ii Stress Intensity Factors and Crack Face Displacements

Referring to Fig.6 for definition of crack parameters, the following equation gives the relation
between stress intensity factors K(y) for a 3-D crack at location ¢ on the crack front, and the

stress intensity factors K; for the two orthogonal slices intersecting at a common point (x,y),

1

(1)) 4 E ' 4 &)
K(¢) =~ + L
(o) 1_"Z{K‘,(x,ax) [ ch(y,cy) }

where n=1 for K; <0 and n=2 for K;>0. The crack face displacement V(x,y) for a 3-D crack

is equal to the crack face displacements for the slices. Thus,

Vx,y) =V ,(a,,y) =V (c,x) (6)

The validity of equations (5) and (6) has been proved analytically for a pressurized embedded

elliptical crack in an infinite body [20], and numerically for various cracks of elliptic-arc front
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in finite bodies under a variety of loading conditions, see, for example, [20,22,23], indicating
that the assumptions made in the method are valid.
2.2.2 Particular Part

This part of the solution process for a 3-D crack problem deals with the particular
geometry and loading conditions for the problem in question. The stress intensity factors and
crack face displacements for both types of orthogonal slices are determined, with the aid of the
fundamental solution in the first part of this section, by using 2-D weight function theory [1-3].
Then the stress intensity factors and the crack face displacements for the 3-D crack are obtained
by using the fundamental relations given above. Since we consider an infinite width plate, our
slices are reduced to those in Fig.5. Their weight functions are given in eq. (3).

Using the 2-D weight function theory [1-3], the stress intensity factors for the slices are

K (x,a) = [ *10(,3)-P.))] Wy a,)dy (72)

K0,c)= fo “P(x,) W,(c, x)dx (7b)

The crack face displacements for the slices are

1 ra,
Ol LA (8)
Vilepn) == [ K0 OW, (&0 (8b)
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in which E,=E, E_=E,, which is given by eq. (4). The only unknown in these equations is the
spring force P(x,y), which can be determined by the compatibility requirement on the crack face

displacements. That is,

V. (a,xy)=V (c X)) ©)

The resulting integral equation for P(x,y) reads as,

IRIRESLAED AT S

(10)
[ [ PO L (E D W  (ENE % IR LAY X)Wy 2)d

To solve this equation, the unknown spring force P(x,y) is expressed as a polynomial function
of x and y:
P(X,y)/0,=\; + M (X/0)1 + Ny(y/a) 3 + N (X/C) + Ns(y/a) + Ng(X/C)(y/a) + N (X/C)* + Ng(y/a)*

+ Ag(X/C) A (y/a) 2 + N o (X/C)*(y/a)* + N (X/€)* + N (y/a) + N 5(X/C)* + N 4 (y/a)*

+ A s(X/C)P(y/a) + N\ (X/c)(y/a) 3 + N (x/C)(y/a)? + A 5(X/C)(y/a) an

where ¢, is a reference stress. The 1/3 terms are included because of their beneficial effect

observed when each term was examined individually. Let eq. (11) be written in the abbreviated

form
b
P(xy)=0,)  Ap(x.y) 12)

Jj=1

where 1,=18. Substituting eq. (12) into (10), the result can be expressed in the form
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b
Y(xy)=3_ AX(x) (13)

j=1
where

(CON TR AR ASE: (14)
X(xy)= :"{ f:p,(x,y) Wd,(é,y)dy} W, (E.)dE +% / x’{ NI ,x)dx} Wya(n,x)dn (15)

These integrals represent the crack face displacements. To avoid double numerical integration,
the inner integrals in the above expressions, which rel;resent the stress intensity factors, are
evaluated analytically. The remaining integrals are determined at 44 different locations as shown
in Fig.7. These points are chosen based on the considerations of: (1) symmetry about the x- and
y-axes, and (2) sufficient distribution over the entire crack surface. The 44 data points are
sufficient such that a further increase in the data points will not change the results. Then the
resulting redundant system of simultaneous equations for A; is solved by a multiple linear
regression scheme. Once \; is known, P(x,y), the value for K; and V; are determined. Then,
K(¢) and V(x,y) are obtained by using the fundamental relations given in the first part of this
section. However, one modification should be included in eq.(5), which is for a crack whose
entire front is in a local plane strain field. For part-elliptical cracks, the crack front intersects
the free surface, and the local plane strain field no longer exists at this point. This is accounted
for in Appendix B.

2.3 3-D Uncracked Stress Distribution

The uncracked stress distribution, o(x,y), used in the weight function method was obtained by
the 3-D finite element analysis [35]. To facilitate its application, the uncracked stress distribution

was then fitted into the following equation:
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1 7
o@yag=Y 3 >+ (2 -%)q (16)

i=1 j=1 r

where q=2j-2 for remote tension and wedge loading, and q=2j-1 for remote bending. The o,
is a reference stress and o,=o0,=o for remote tension; o,=0, =P/(2rt) for wedge loading and
d,=0, (remote outer fiber bending stress) for remote bending. The applied load in the hole is

P.

3. RESULTS AND DISCUSSIONS

Using the uncracked stress distributions given by the 3-D finite element method,
comprehensive solutions of stress intensity factors for a corner cracked hole under remote
tension, remote bending and wedge loading in the hole will be provided in the following section
by the 3-D weight function method. The results are compared, whenever possible, with existing
solutions. The importance of using 3-D uncracked stress solutions in weight function methods
is studied by comparing stress intensity factor solutions obtained from using 2-D and 3-D
uncracked stress distributions. The difference in stress intensity factors between single and
double corner cracks is investigated. Some typical results for crack face displacements are also
provided.

The stress intensity factors are given in a dimensionless form defined as

F(9)=K(9)/(0,y/mal®) (17)

Some typical crack mouth (x=y=0) displacements are given in the following dimensionless

form:
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V(0,0)E
co,

COD= (18)

3.1 Stress Intensity Factors for Double Corner Cracks

3.1.1 Remote Bending

The weight function results for double corner cracks under remote bending are listed in
Tables 1-6 for r/t=0.1, 0.25, 0.5, 1, 1.5 and 2.5, respectively. Comparisons with finite element
solutions [28] are shown in Figs.8 through 10 for a/c=0.2, 2 and 1, respectively. Also shown
are the results from Newman and Raju’s empirical equations [14]. Before discussing the
comparison, we note that the finite element solution [29] was obtained for (c+r)/b<0.2, while
the weight function solution is obtained by using weight functions for (c+r)/b=0, and stress
distributions for r/b=0.2. This difference in the models has minimal effect as long as the
restraining areas in the finite element model were large enough to resist localized deformation
on the back surface. For the cases of smaller restraining areas, the weight function solutions for
infinite width cases will serve as a lower bound of solutions for the cases of finite width.
Inspection of Figs.8 through 10 shows that the agreement between weight function and finite
element solutions is generally very good, except for the region near the hole surface (¢=90°)
for a/t=0.2, where the precipitous drop-off of the finite element solutions has been shown to
be mainly due to some "ill-shaped" elements near the hole surface [31]. Furthermore, the
equation [14] generally gives a good estimation in this region, because finite element data in this
region were not used in developing the equations [13,14]. .
3.1.2 Remote Tension

Tables 7-12 list the weight function results for double corner cracks under remote tension
withr/t=0.1, 0.25, 0.5, 1, 1.5 and 2.5, respectively. Comparisons with other available solutions

are shown in Figs.11 through 13 for a/c=0.2, 2.0 and 1.0, respectively. The general trend can
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be divided into three categories by a/c and a/t ratios: (i) a/c=0.2 and 2.0 with a/t<0.5, (ii)
a/c=0.2 and 2.0 with a/t=0.8 and (iii) a/c=1.0.

For category (i) (Figs.11(a,b) and 12(a,b)), the weight function solutions agree very well
with various numerical solutions, with excellent agreement observed for a/c=0.2. The weight
function solutions and the finite element solutions [28] coincide with each other, except for the
region near the hole surface, where the finite element model contained "ill-shaped” elements
[31]. It is noted that, for a/c=0.2, detailed convergence studies were performed in the finite
element analysis [28]. For a/c=2, good agreement between the weight function method and the
finite element alternating method [38] is observed along the entire crack front.

For category (ii), the weight function results and the finite element/finite element
alternating results have good agreement around ¢=0° and for a/t<Q.5, but they differ
significantly in a large region towards ¢=90° (see a/t=0.8 in Figs.12(a,b)), with the weight
function solution being higher than the numerical solutions.

For category (iii) (Figs.13(a,b)), the results do not agree, except for a/t=0.2 with
r/t=0.5 (Fig.13(a)), where the weight function and the finite element solutions [36] agree within
6% . The weight function results are either equal to or consistently lower than the finite element
results [28] for ¢ <45°, and consistently higher than the finite element results [28] towards
»=90°,

As shown in Figs.12 and 13, the weight function solutions are higher than the finite
element solutions for some cases. However, since the weight functions used are for the cases
of maximum constraint, it is expected that the weight function solutions would be either correct
or a lower bound for the "true" solutions for the cases of finite restraining areas. Thus, it
appears that additional finite element analysis with detailed convergence studies are needed to
determine the source of the discrepancies shown in Figs.12 and 13. To further indicate the
accuracy of the weight function solution, Figures 14(a,b) show the limiting cases as a/c—=0 and
oo. The plane strain condition is assumed at ¢=0° for a/c =20 in Fig.14(a) and at ¢=90° for

a/c<0.05 in Fig.14(b) (see Appendix B for details). In Fig.14(b), a large r/t is used to keep c/r
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within the weight function’s limit of c/r=2. As observed, the weight function solutions produced
the correct limits for 2-D cracks.
3.1.3 Wedge Loading in the Hole

The weight function results for double corner cracks under wedge loading in the hole are
listed in Tables 13-18 for r/t=0.1, 0.25, 0.5, 1, 1.5 and 2.5, respectively. The 3-D finite
element solution of the uncracked stress distribution is for a cosine wedge loading distribution,
while the finite element stress intensity factor solutions reported in {28] were for cosine squared
distributions. Before comparing the weight function solutions for the cosine distribution with the
finite element solutions for the cosine squared distribution, it would be helpful to understand the
difference between the two load distributions. Figure 15 shows such a comparison. The 2-D
solutions are taken from [38,45]. As shown in Fig.15, the cosine distribution is higher than the
cosine squared distribution by 8% at the hole surface (x/r=0), which is the maximum difference
(This would make the weight function solution a little higher near ¢=90°). The two solutions
cross each other at about x/r=0.05 and the two distributions converge as x/r increases; the
difference at x/r=1 is about 1%. Figures 17 through 18 show a comparison of the weight
function solutions with other available solutions (c/r ratios are given in these Figures to show
the crack range in the x-direction). The trend here is the same as that for remote tension, and
can be similarly discussed in terms of the same three categories as above. It is noted, however,
that improved agreement is observed for category (ii) (a/c=0.2 and 2.0 with a/t=0.8, see
Figs.17(a,b)) and category (iii) (see Fig.18(a)).
3.2 Significance in Using 3-D Uncracked Stress Solutions

In the literature, applications of weight function methods to cracks emanating from stress
concentrations have invariably used uncracked stress distributions from 2-D analysis. As
indicated by 3-D analysis of stress concentration factors [34,35], the 2-D solutions may not
represent the true solutions satisfactorily. By using both 2-D [46] and 3-D uncracked stress
solutions, Figures 19(a,b) and 20(a,b) compare the weight function solutions obtained for remote

tension. Two r/t ratios, 0.5 and 1; and two ‘a/c ratios, 0.2 and 2, are considered. As can be
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seen, the difference in stress intensity factors from 2-D and 3-D stress solutions depends on r/t.
Since different crack shapes and sizes cover areas having different stresses, it also depends on
a/c and a/t, and varies along the crack front. The general trend is: the smaller r/t and a/t, the
larger the difference. For the same r/t and a/t ratios, the difference is more pronounced and is
retained longer for a/c=2, primarily because the crack front is closer to the hole surface. It is
clearly seen that the 2-D stress solution can overestimate the K-factors significantly for small
corner cracks. This is of practical importance since most of fatigue life is spent when the crack
is small. As the crack gets larger, the crack front gets farther from the corner region formed by
the hole surface and the plate surface where the 2-D and 3-D stress solutions differ most. Hence,
the difference decreases. However, for small r/t ratios with small a/t ratios, use of the 3-D

uncracked stress solutions is necessary.

3.3 Difference between Single and Double Cracks

A single corner crack can be considered by using appropriate weight functions for c-
slices. The solutions for a single crack are compared with those for double cracks in Figs.21 and
22 for remote tension and remote bending, respectively. Because of the large a/t and small r/t
ratios considered, the differences observed in Figs.21 and 22 are among the largest that corner
cracks could have for these load cases. For remote tension, Figure 21(b) compares the ratio
Ky/K,, where K, is for double cracks and K, for a single crack. As in Fig.21(a), the same a/t
ratio of 0.8 and L/r ratio of 1.005 are used, where L is the length of a through-thickness crack
that has the same area as a corner crack. We note that the ratio of K /K, increases with a/c,
since the corner crack becomes closer to a through crack. Also shown in Fig.21(b) are the
results from Shah’s conversion factor [47], and from through-thickness cracks [3]. In the
literature, Shah’s conversion factor [47] is invariably used to obtain stress intensity factors for
single crack by using solutions for double cracks, or vice versa. In this case, Shah’s result has
an error in the range of 3-11%; it will overestimate K, or underestimate K, depending upon

which one is the known solution. Figure 22 compares the same cracks as in Fig.21(a), but under
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remote bending. The differences are small. For very small cracks, single crack and double crack
configurations will have the same solution.
3.4 Crack Face Displacements

Crack face displacement is a useful parameter in fatigue and fracture experiments, in
fatigue crack modeling and in fracture criterion. The crack face displacement is obtained during
the process of obtaining K values by the weight function method. Some typical crack face
displacements at the crack mouth location (x=y=0) are shown in Fig.23. A large range of a/c
ratios from 1 to 80 is considered, as represented by circles in the Figure. Also shown in Fig.23
are the results for through-thickness cracks by Mall and Newman [48], with plane strain
conditions assumed. As can be seen, the crack face displacement for corner cracks approaches
that for through-thickness cracks as a/c increases (c/r decreases as a consequence). The two
coincide for a/c>7 (c/r<0.046). A slight difference (2%) at a/c=80 (c/r=0.004) is due to
inaccuracies in the weight function; crack face displacements at other locations are expected to

have better accuracy than at the crack mouth.

4. CONCLUDING REMARKS

Through the above analysis and discussions it is shown that the optimal combination of
the 3-D weight function method and the 3-D finite element method provides an accurate and
efficient approach to analyze 3-D cracks emanating from stress concentrations. Extensive results
of stress intensity factors are obtained for remote tension, remote bending and wedge loading
in the hole. The configuration parameters covered are r/t=0.1, 0.25, 0.5, 1, 1.5 and 2.5;
a/c=0.2, 0.4, 1 and 2; and a/t=0.01, 0.1,0.2, 0.3,0.4,0.5, 0.6, 0.7, 0.8, and 0.9 within the
limit of c/r=2. The significance in using 3-D uncracked stress distribution in 3-D weight
function methods is demonstrated. This is particularly important to small corner cracks from
relatively small holes. The difference in stress intensity factors between a single corner crack
and double corner cracks is studied. Typical crack face displacements are also presented. To

account for the change of stress state at the intersection of the crack front with the free surface,
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an interpolation function is developed. With the aid of the superposition principle the solutions

provided can be used to solve many practical problems.
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Appendix A
The weight function W, in eq. (3a) is taken from Wu and Carlsson [3]. It was developed
by making an assumed crack face displacement expression satisfy the following four conditions:
(1) K-controlled near-tip crack face displacement, (ii) self-consistent K factor, (iii) vanishing
curvature at crack mouth, and (iv) known solution at crack mouth. The resulting weight function
has an accuracy better than 2% in K for a/t<0.85.

Defining the dimensionless crack length s=a/t, the weight function [3] is expressed as

follows:
13 -3
W (s0)=—=Y B (1-2) 2 (A1)
2nai=1 a
where
B,=2
B,=[457'(s) +2ﬂs)+§F2(s)w(s)
By~ + [SF,0)-F, G A2)

B4={sF3'(s)—%[7F4(S) 3F,TIAS)

5
Bs=[Fi9)-S FAUAS)
where "'" represents differentiation with respect to s, and
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=L [-1260mE(s) +525V(s) +616,3A(s)]
3042

F,=/2V(s)-[F () +F,(s) +F,(9)]

18
== [t(0d
(s s2{ (Qd(

fs)= K (A4)
oyna
u(s,0)E
ac

V(s)=

in which K and u are reference stress intensity factor and crack mouth displacement,

respectively. The reference load case used is a uniform crack face pressure, o.

Appendix B

The situation at the intersection of the crack front with the free surface differs from that
in the interior in two aspects: (i) the order of stress singularity, and (ii) the stress state. The
weight function method is unable to address the first issue but, fortunately, the study by the 3-D
finite element method has shown that the non-square root singularity dominates only a very thin
layer from the free surface, which is less than 3° in terms of crack parametric angle measured
from the surface [30]. Furthermore, numerous applications have shown that stress intensity
factors obtained without considering the changes in stress singularity produced good correlation
to experimental data. Therefore, the change of stress singularity can be neglected from the
application point of view.

The modification to eq.(5) is concerned with the change of stress conditions, which

occurs in a larger area than that in which the hon-square root singularity dominates. The stress
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state at the intersection of the crack front with the free surface is in general neither plane strain,
nor plane stress, but somewhere in between. The modification to eq.(5) is based on the results
from (i) the crack front constraint analysis [49] and (ii) the analysis of embedded elliptical cracks
of various a/c ratios [23].

The constraint analysis [49] shows that most of the crack front is nearly in a plane strain
state, except for a small region with a parametric angle of about 10° from the surface, where
the constraint factor is zero. The analysis of embedded elliptical cracks [24] has shown that for
a/c 220, the stress intensity factor at the minor axis stays the same as that of a corresponding
2-D center crack. This gives the condition that the stress intensity factor at the minor axis attains
the appropriate value of the corresponding 2-D crack when a/c=20. In other words, this
condition implies that for a/c =20, use of an appropriate stress state should make the stress
intensity factor at the minor axis equal to that of the corresponding 2-D crack. This appropriate
stress state is a plane strain state.

Based on these two considerations, an engineering estimation is adopted, such that an
interpolation between plane stress and plane strain is completed as a function of a/c and A¢, the
parametric angle measured from the surface. One way of accomplishing this is to modify eq.(5)

as follows:

1

- D E 4 B1
K(o9)= {K",1 x.a) +[E,KC@’C’)]‘ }4 (BI)

1-n%(v,afc,Ap)

where n(v,a/c,Ap) is a bi-quadratic function of a/c and Ag. The effect of this modification is to
realize (i) plane stress conditions for Ap=0° with a/c=0 (at ¢=0°), or c/a=0 (at ¢=90°); and
(ii) plane strain conditions for A¢ =10°; and for a/c =20 (at ¢=0°), or c/a=20 (at ¢=90°).
A bi-quadratic interpolation is used for portions between these extreme points, with slower
changes towards A¢=10° and a/c=20. For example, the bi-quadratic function n(v,a/c,A¢) can

take the following form (near ¢=0°):
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n(v.alc,Ap)=—
1+v

2|1, @), (Ae) _(A9)  (alc(Ag)
v (@) (ac)? (Ae) (Ag)? (@) (M),

where (a/c),=20 with 0<a/c<20, and (A¢),=10° with 0°<Ap<10°. A schematic
representation of 7 is given in Fig.B1. The corresponding function for the case near ¢=90° can
be obtained by replacing a/c with c/a in eq. (B2). Finally, it should be pointed out that the

maximum difference between eq. (5) and eq. (B1) is only 4% for »=0.3.
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Table 1 Dimensionless stress intensity factors for double corner cracks at a hole under
remote bending, r/t=0.1

alc at °0.1 11.3 225 338 450 563 675 825 899
02 001 02820 0.826 1.015 1.202 1393 1.606 1.850 2.285 2.561
04 001 1403 1266 1.383 1.546 1.728 1.939 2.164 2.506 2.684

1.0 001 2645 2350 2310 2.313 2.336 2.415 2.513 2.708 2.878
0.1 1569 1380 1.327 1.322 1.356 1.422 1.539 1.875 2.193

0.2 1384 1.189 1.106 1.058 1.040 1.037 1.084 1.284 1.607
20 001 1963 1787 1720 1.652 1.575 1.513 1.451 1.429 1.527
0.1 1.254 1.146 1.106 1.076 1.049 1.034 1.029 1.104 1.229
0.2 1.047 0.933 0.867 0.810 0.763 0.724 0.704 0.767 0.887
0.3 0950 0.822 0.734 0.652 0.585 0.529 0.496 0.524 0.626
0.4 0885 0.744 0.639 0.539 0.455 0.388 0.347 0.340 0.412

Table 2 Dimensionless stress intensity factors for double corner cracks at a hole under
remote bending, r/t=0.25

alc alt ¢°0.1 11.3 225 338 450 563 675 825 899
0.2

0.991 0.989 1.220 1.436 1.639 1.847 2.053 2.341 2.482
0.656 0.650 0.766 0.876 0.971 1.062 1.181 1.502 1.951

1.587 1.427 1.550 1.710 1.873 2.051 2.219 2.442 2.549
1.006 0.896 0.941 1.024 1.122 1.238 1.392 1.744 2.045
0.905 0.793 0.807 0.851 0.899 0.950 1.034 1.278 1.610

- O
—

0.4

ot

1.0

[y

2.688 2.382 2.329 2.311 2.306 2.353 2.413 2.549 2.689
1.857 1.632 1.584 1.578 1.604 1.674 1.781 2.026 2.224
1.579 1358 1.277 1.235 1.224 1.247 1311 1.525 1.731
1.434 1204 1.096 1.021 0.974 0.954 0.975 1.117 1.297
1.338 1.098 0.967 0.862 0.785 0.732 0.719 0.784 0.916
1.259 1.009 0.860 0.732 0.629 0.552 0.512 0.505 0.569

1.900 1.725 1.653 1.578 1.493 1.423 1.354 1.320 1.406
1.470 1332 1.277 1.227 1.176 1.139 1.107 1.123 1.215
1.240 1.105 1.035 0.970 0911 0.867 0.836 0.862 0.946
1.108 0.963 0.871 0.785 0.709 0.650 0.610 0.624 0.692
1.017 0.859 0.746 0.640 0.548 0.476 0.425 0.418 0.464
0.947 0.775 0.645 0.521 0.414 0.331 0.270 0.234 0.252
0.890 0.706 0.560 0.419 0.298 0.205 0.134 0.067 0.052
0.842 0.645 0485 0.329 0.193 0.090 0.013 -0.084 -0.133
0.799 0.591 0.417 0.245 0.095 -0.017 -0.102 -0.222 -0.305
0.760 0.540 0.352 0.164 0.006 -0.118 -0.211 -0.362 -0.483

2.0
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Table 3 Dimensionless stress intensity factors for double comer cracks at a hole under
remote bending, r/t=0.5

alc alt ¢°0.1 113 225 338 450 563 675 8.5 899

0.2

[y

1.046 1.041 1279 1.491 1.678 1.855 2.014 2.209 2.296
0.724 0.713 0.848 0.971 1.081 1.190 1.319 1.605 1.873
0.658 0.639 0.739 0.825 0.889 0.947 1.018 1.214 1.513

1.577 1.415 1.531 1.677 1.819 1.967 2.099 2.263 2.341
1.121 0.994 1.053 1.145 1.247 1367 1.508 1.772 1.947
0.995 0.867 0.890 0.940 0.996 1.061 1.150 1.368 1.574
0.925 0.793 0.791 0.809 0.828 0.851 0.898 1.046 1.233
0.873 0.735 0.713 0.705 0.694 0.688 0.702 0.784 0.926

2.243 2.188 2.163 2.147 2.178 2.221 2.330 2.450
2.009 1.758 1.699 1.677 1.677 1.722 1.790 1.951 2.093
1.739 1.494 1.408 1.359 1.333 1.347 1.392 1.542 1.681
1.582 1.330 1.216 1.134 1.077 1.054 1.065 1.172 1.292
1.470 1.207 1.067 0.956 0.870 0.815 0.795 0.848 0.936
1.380 1.105 0.942 0.806 0.695 0.615 0.566 0.560 0.605
. 1.018 0.835 0.676 0.543 0.438 0.362 0.297 0.290
1.239 0.940 0.739 0.559 0.403 0.275 0.175 0.056 -0.009
1.180 0.868 0.650 0.450 0.270 0.120 0.005 -0.160 -0.283
1.124 0.800 0.564 0.344 0.141 -0.027 -0.166 -0.389 -0.577

0.4

[ary

1.0

p—
g
w
W
W

2.0

[l
(o=
~
W
oo

1.594 1.524 1.451 1.368 1.300 1.233 1.197 1.274
1.518 1.362 1.292 1.225 1.156 1.102 1.053 1.041 1.116
1.337 1.182 1.098 1.020 0.944 0.885 0.838 0.833 0.899
1.212 1.048 0.945 0.849 0.759 0.689 0.637 0.627 0.679
1.120 0.944 0.820 0.703 0.598 0.517 0.457 0.435 0.469
1.047 0.857 0.713 0.578 0.458 0.365 0.296 0.255 0.270
0.985 0.782 0.620 0.467 0.333 0.228 0.149 0.085 0.077
0.931 0.715 0.536 0.366 0.218 0.101 0.013 -0.073 -0.105
0.883 0.653 0.458 0.272 0.109 -0.018 -0.113 -0.219 -0.276
0.839 0.595 0.385 0.182 0.007 -0.131 -0.234 -0.370 -0.455
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Table 4 Dimensionless stress intensity factors for double corner cracks at a hole under
remote bending, r/t=1.0

alc at ¢°01 11.3 225 338 450 563 67.5 8.5 89.9

0.2 1.059 1.059 1.296 1.497 1.668 1.826 1.957 2.109 2.186
0.802 0.791 0.945 1.079 1.196 1.313 1.434 1.655 1.812
0.722 0.701 0.815 0.908 0.984 1.051 1.121 1.296 1.477
0.672 0.641 0.726 0.786 0.827 0.860 0.893 1.011 1.172
0.632 0.592 0.654 0.685 0.696 0.701 0.709 0.777 0.893

1.546 1386 1.496 1.632 1.759 1.891 2.003 2.138 2.203
1.233 1.090 1.157 1.254 1.354 1.467 1.586 1.775 1.882
1.101 0.957 0.989 1.045 1.102 1.170 1.251 1.422 1.547
1.022 0.874 0.878 0.900 0.921 0.948 0.991 1.115 1.233
0.961 0.807 0.787 0.780 0.771 0.767 0.778 0.852 0.946
0.911 0.750 0.709 0.677 0.642 0.612 0.598 0.622 0.679
0.868 0.699 0.639 0.585 0.528 0.475 0.435 0.414 0.423
0.830 0.652 0.575 0.502 0.424 0.347 0.284 0.223 0.181
0.795 0.609 0.516 0.425 0.324 0.224 0.144 0.053 -0.042

2417 2.137 2.081 2.053 2.032 2.056 2.091 2.185 2.296
2.111 1.840 1.769 1.732 1.710 1.731 1.771 1.881 1.994
1.888 1.617 1.521 1.458 1.415 1.411 1.433 1.532 1.638
1.733 1.455 1.332 1.238 1.166 1.131 1.127 1.197 1.286
1.617 1.328 1.176 1.053 0.952 0.889 0.857 0.889 0.955
1.523 1.222 1.043 0.893 0.767 0.677 0.618 0.605 0.642
1.442 1.128 0.925 0.750 0.602 0.485 0.398 0.338 0.340
1.370 1.042 0.818 0.621 0.449 0.306 0.193 0.087 0.051
1.304 0.962 0.718 0.499 0.302 0.135 0.003 -0.143 -0.219
1.242 0.887 0.622 0.380 0.160 -0.029 -0.184 -0.394 -0.516

[y

0.4

oy

1.0

[y

2.0

[y

1.660 1.504 1.436 1.365 1.285 1.219 1.154 1.119 1.190
1.527 1363 1.284 1.206 1.125 1.062 1.004 0.978 1.043
1.403 1.231 1.133 1.041 0.951 0.881 0.822 0.799 0.855
1.301 1.117 1.000 0.889 0.786 0.705 0.642 0.616 0.660
1.217 1.019 0.881 0.751 0.632 0.541 0.473 0.440 0.470
1.145 0.933 0.774 0.624 0.492 0.389 0.315 0.270 0.284
1.082 0.857 0.677 0.509 0.363 0.248 0.164 0.105 0.103
1.026 0.787 0.587 0.402 0.241 0.114 0.021 -0.053 -0.073
0.976 0.722 0.504 0.301 0.125 -0.014 -0.113 -0.201 -0.239
0.929 0.660 0.424 0.203 0.013 -0.137 -0.245 -0.362 -0.421
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Table 5 Dimensionless stress intensity factors for double corner cracks at a hole under
remote bending, r/t=1.5

alc alt ¢°0.1 113 225 338 450 563 675 825 899

0.2 1.062 1.062 1.298 1.495 1.660 1.811 1.932 2.069 2.138
0.849 0.836 1.002 1.142 1.264 1.383 1.500 1.687 1.804
0.768 0.744 0.869 0.967 1.044 1.115 1.188 1.345 1.481
0.714 0.681 0.774 0.838 0.881 0.915 0.950 1.059 1.184
0.671 0.629 0.696 0.729 0.741 0.747 0.755 0.819 0.912
0.636 0.585 0.627 0.635 0.620 0.602 0.588 0.611 0.660
0.606 0.545 0.566 0.550 0.513 0.472 0.436 0.421 0.418

1.502 1.368 1.475 1.599 1.720 1.850 1.959 2.100 2.195
1.269 1.138 1.208 1.298 1.392 1.500 1.603 1.762 1.868
1.138 1.003 1.038 1.089 1.144 1.209 1.279 1.418 1.525
1.055 0.913 0.918 0.935 0.952 0.976 1.009 1.108 1.202
0.992 0.841 0.820 0.807 0.791 0.782 0.783 0.837 0.905
0.937 0.778 0.735 0.695 0.651 0.614 0.586 0.594 0.629
0.889 0.722 0.658 0.594 0.526 0.462 0.407 0.369 0.363
0.846 0.671 0.587 0.502 0.409 0.318 0.237 0.159 0.110
0.807 0.623 0.521 0.415 0.296 0.179 0.079 -0.035 -0.128
0.771 0.578 0.458 0.331 0.187 0.046 -0.079 -0.250 -0.389

2.368 2.093 2.037 2.009 1.987 2.008 2.040 2.130 2.236
2.151 1.872 1.796 1.751 1.720 1.731 1.759 1.850 1.952
1.966 1.681 1.579 1.507 1.453 1439 1.449 1.526 1.619
1.821 1.528 1.396 1.295 1.213 1.170 1.156 1.208 1.286
1.705 1.400 1.239 1.108 0.998 0.928 0.890 0.910 0.968
1.609 1.291 1.102 0.942 0.808 0.712 0.648 0.631 0.665
1.526 1.193 0.979 0.794 0.637 0.514 0.422 0.363 0.371
1.451 1.105 0.866 0.658 0.476 0.326 0.208 0.109 0.087
1.384 1.022 0.761 0.529 0.322 0.146 0.008 -0.127 -0.181
1.320 0.944 0.660 0.404 0.172 -0.027 -0.190 -0.390 -0.481

(=]
fonrd

0.4

[amry

1.0

P

2.0

[am—y

1.622 1.469 1402 1.332 1.253 1.188 1.124 1.089 1.158
1.527 1.360 1.276 1.195 1.110 1.043 0.982 0.951 1.013
1.429 1.250 1.147 1.048 0.952 0.876 0.813 0.783 0.835
1.343 1.150 1.025 0.907 0.796 0.709 0.642 0.609 0.650
1.267 1.059 0.911 0.773 0.648 0.551 0.479 0.440 0.469
1.200 0.976 0.806 0.648 0.509 0.401 0.323 0.276 0.291
1.139 0.900 0.708 0.532 0.379 0.259 0.173 0.115 0.116
1.083 0.829 0.617 0.423 0.255 0.122 0.028 -0.041 -0.055
1.032 0.762 0.531 0.319 0.135 -0.010 -0.110 -0.190 -0.219
0.984 0.698 0.448 0.217 0.018 -0.138 -0.249 -0.354 -0.402
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Table 6 Dimensionless stress intensity factors for double corner cracks at a hole under
remote bending, r/t=2.5

alc  alt ¢°01 113 225 338 450 563 675 825 89.9

0.2 1 1.056 1.055 1288 1.481 1.640 1.783 1.896 2.020 2.082
0.901 0.887 1.064 1.211 1.334 1.452 1.558 1.705 1.789
0.819 0.793 0.928 1.032 1.113 1.188 1.260 1.391 1.484
0.764 0.728 0.830 0.898 0.941 0.977 1.014 1.110 1.196
0.720 0.674 0.747 0.783 0.794 0.799 0.808 0.866 0.934
0.682 0.626 0.673 0.681 0.665 0.645 0.630 0.649 0.690
0.649 0.584 0.607 0.590 0.551 0.506 0.467 0.449 0.454
0.620 0.545 0.547 0.508 0.445 0.375 0.313 0.262 0.229
0.594 0.510 0.491 0.431 0345 0.251 0.170 0.092 0.021
0.570 0.477 0.437 0.359 0.249 0.134 0.034 -0.097 -0.211

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
04 001 1.475 1344 1448 1.568 1.684 1.809 1912 2.045 2.136
0.1 1.322 1.185 1.256 1.344 1.434 1.534 1.623 1.754 1.844
02 1206 1062 1.101 1.153 1.206 1.268 1.329 1.440 1.525
0.3 1.122 0970 0.978 0.996 1.011 1.036 1.064 1.145 1.218
04 1.056 0.896 0.875 0.861 0.843 0.834 0.832 0.877 0.932
0.5 1.001 0.831 0.785 0.742 0.695 0.656 0.626 0.632 0.664
0.6 0951 0772 0.704 0.635 0.562 0.495 0.436 0.400 0.405
0.7 0907 0.719 0.629 0.537 0.438 0.341 0.255 0.181 0.156
0.8 0.866 0.668 0.558 0.444 0.319 0.193 0.085 -0.023 -0.078
0.9 0.827 0.620 0.490 0.354 0.201 0.051 -0.083 -0.252 -0.343
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.0
0.1
0.2
0.3
04
0.5
0.6
0.7
0.8
0.9

1.0 1 2240 2.033 1.983 1.949 1933 1.958 1.984 2.088 2.231
2102 1.874 1.795 1.737 1.700 1.705 1.717 1.806 1.933
1.965 1.718 1.607 1.518 1.452 1.426 1.416 1.480 1.587
1.846 1.579 1435 1.313 1.214 1.157 1.122 1.156 1.240
1.742 1455 1.277 1.122 0.993 0.905 0.845 0.846 0.906
1.651 1.343 1.132 0.946 0.788 0.670 0.584 0.548 0.581
1.570 1.241 0.999 0.783 0.597 0.449 0.333 0.257 0.262
1.496 1.146 0.875 0.630 0.415 0.235 0.091 -0.024 -0.049
1.427 1.057 0.758 0.485 0.239 0.029 -0.140 -0.293 -0.347
1.363 0.972 0.643 0.342 0.066 -0.175 -0.374 -0.596 -0.687

1 1579 1429 1364 1.295 1.217 1.154 1.092 1.057 1.123
1.513 1.345 1.260 1.176 1.088 1.018 0.956 0.922 0.980
1.441 1.256 1.149 1.045 0.944 0.863 0.796 0.761 0.809
1.373 1.171 1.040 0915 0.798 0.707 0.635 0.597 0.635
1.309 1.091 0.935 0.789 0.657 0.555 0.479 0.437 0.464
1.250 1.014 0.834 0.668 0.522 0.410 0.328 0.280 0.295
1.195 0942 0.739 0.554 0.393 0.269 0.181 0.125 0.128
1.142 0.872 0.648 0.444 0.268 0.131 0.036 -0.027 -0.037
1.093 0.806 0.560 0.337 0.145 -0.005 -0.105 -0.174 -0.196
1.045 0.741 0.474 0.231 0.024 -0.137 -0.248 -0.341 -0.379

2.0
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Table 7 Dimensionless stress intensity factors for double corner cracks at a hole under
remote tension, r/t=0.1

alc a/t ¢°0.1 113 225 338 450 563 675 825 899

0.2 0.01 0.827 0.836 1.033 1.232 1.440 1.677 1.954 2.448 2.758
04 001 1452 1314 1442 1.621 1.824 2.060 2.313 2.697 2.895

1.0 0.01 2.791 2.487 2.454 2467 2501 2.594 2.707 2.925 3.112
0.1 1.629 1.467 1.448 1.483 1.563 1.677 1.850 2.301 2.713

0.2 1473 1320 1.283 1.293 1.339 1.396 1.513 1.874 2.402
20 0.01 2.082 1901 1.837 1.771 1.694 1.632 1.569 1.548 1.655
0.1 1.327 1.248 1.241 1.242 1.243 1.250 1.265 1.378 1.540
0.2 1.125 1.055 1.035 1.025 1.021 1.017 1.028 1.168 1.370
0.3 1.048 0975 0.942 0.922 0.912 0.898 0.904 1.037 1.271
0.4 1.005 0929 0.891 0.867 0.854 0.832 0.833 0.946 1.202

Table 8 Dimensionless stress intensity factors for double corner cracks at a hole under
remote tension, r/t=0.25

alc alt ¢°0.1 11.3 225 338 450 563 675 8.5 899

0.2 1.093 1.094 1.357 1.610 1.856 2.114 2.376 2.746 2.926
0.651 0.661 0.793 0.932 1.063 1.197 1.383 1.901 2.585

-
p—

04

[y

1.810 1.631 1.778 1.971 2.171 2.390 2.599 2.877 3.010
1.026 0.936 1.009 1.134 1.290 1.477 1.727 2.282 2.730
0.938 0.859 0.910 1.011 1.129 1.258 1.444 1.932 2.550

3.122 2.771 2.717 2.705 2.707 2.769 2.846 3.014 3.181
2.056 1.851 1.852 1.906 2.000 2.150 2.343 2.730 3.014
1.734 1.562 1.552 1.595 1.681 1.809 1.995 2.445 2.823
1.602 1.439 1416 1.444 1.515 1.614 1.774 2.217 2.665
1.536 1.378 1.345 1.360 1.419 1499 1.642 2.059 2.562
1.493 1.338 1.302 1.314 1.367 1.436 1.571 1.957 2.506

. 2.017 1938 1.855 1.759 1.681 1.602 1.565 1.667
1.696 1.577 1.559 1.545 1.523 1.512 1.497 1.543 1.674
1.426 1.342 1.337 1.336 1.333 1.338 1.346 1.442 1.597
1.284 1.211 1.202 1.200 1.198 1.202 1.217 1.342 1.515
1.199 1.128 1.113 1.106 1.105 1.107 1.125 1.267 1.458
1.144 1.073 1.052 1.042 1.043 1.044 1.063 1.212 1.421
1.107 1.035 1.010 1.000 1.003 1.003 1.021 1.171 1.396
1.082 1.010 0.984 0.974 0.979 0.978 0.996 1.144 1.384
1.068 0.995 0.969 0.962 0.969 0.970 0.994 1.148 1.410
1.061 0.987 0.966 0.965 0.978 0.986 1.031 1.188 1.483

1.0

[y

2.0

SOO00000000 OO0000D 900 OO
\DOO\IO\U-PL»I\M—-S VNP WN-=O N — O

N

N

(S

~1

32




Table 9 Dimensionless stress intensity factors for double corner cracks at a hole under
remote tension, r/t=0.5

alc  alt ¢°0.1 113 225 338 450 563 67.5 825 89.9

0.2 1 1329 1325 1.636 1919 2.175 2.425 2.654 2.939 3.066
0.748 0.753 0.917 1.080 1.264 1462 1.718 2.292 2.772
0.671 0.680 0.817 0.962 1.098 1.239 1.431 1.946 2.618

1 2054 1.846 2.003 2.202 2.397 2.604 2.789 3.021 3.131
1.272 1.151 1.258 1.418 1.609 1.841 2.116 2.607 2.906
1.078 0.979 1.055 1.183 1.340 1.528 1.777 2.321 2.763
1.003 0914 0974 1.085 1.219 1.375 1.591 2.117 2.657
0.963 0.881 0.933 1.035 1.157 1.293 1.489 1.982 2.595

0.4

0

1

2

0

1

2

3

4
1.0 01 3.345 2964 2.897 2.871 2.857 2.905 2.968 3.119 3.282
1 2.552 2.278 2.263 2.300 2.367 2.495 2.650 2.944 3.171
2 2148 1.925 1920 1.968 2.053 2.196 2.382 2.761 3.044
3 1.936 1.737 1.726 1.769 1.854 1.988 2.178 2.602 2.934
4 1.808 1.621 1.603 1.639 1.720 1.847 2.034 2.484 2.862
5 1.724 1.544 1.520 1.553 1.635 1.757 1.942 2.406 2.825
6 1.669 1.495 1.467 1499 1.585 1.706 1.888 2.355 2.814
7 1.636 1.465 1.437 1473 1.564 1.683 1.867 2.338 2.838
8 1.622 1.453 1.427 1469 1.570 1.694 1.899 2.401 2.956
9 1.627 1.457 1.439 1495 1.614 1.767 2.042 2.606 3.242
0
1
2
3
4

1 2328 2114 2026 1933 1.826 1.739 1.652 1.607 1.709
1.998 1.833 1786 1.740 1.684 1.643 1.597 1.600 1.719
1.755 1.626 1.602 1.581 1.551 1.533 1.514 1.555 1.687
1.592 1.484 1468 1.456 1.440 1.434 1.430 1.501 1.645
1.480 1.383 1.368 1.360 1.351 1.352 1.360 1.457 1.611

2.0

5 1399 1308 1.293 1.286 1.284 1.291 1.308 1.423 1.589
6 1.339 1.253 1.237 1.233 1.236 1.247 1.268 1.398 1.575
7 1294 1212 1.196 1.195 1.204 1.217 1.240 1.383 1.573
8 1263 1.182 1.168 1.171 1.186 1.202 1.234 1.400 1.606
9

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0. 1.244 1.164 1.153 1.163 1.187 1.216 1.272 1.466 1.696
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Table 10 Dimensionless stress intensity factors for double corner cracks at a hole under
remote tension, r/t=1.0

alc alt ¢°0.1 113 225 338 450 563 675 825 899

0.2 01 1.552 1.545 1.898 2.208 2.474 2.719 2.927 3.163 3.263
0.942 0943 1.164 1.387 1.617 1.875 2.175 2.700 3.016
0.779 0.782 0.954 1.133 1.317 1.525 1.793 2.382 2.862
0.715 0.722 0.872 1.029 1.186 1.357 1.589 2.163 2.758

0.682 0.691 0.830 0.977 1.119 1.271 1479 2.022 2.703

2.286 2.052 2.220 2.428 2.625 2.829 3.004 3.216 3.317
1.643 1.479 1.616 1.809 2.024 2.273 2.537 2.932 3.137
1.349 1.217 1.327 1.493 1.689 1.926 2.206 2.700 2.999
1.203 1.088 1.179 1.323 1.499 1.713 1.984 2.524 2.901
1.117 1.014 1.090 1.220 1.382 1.580 1.842 2.404 2.850
1.065 0.968 1.035 1.157 1.314 1505 1.762 2.336 2.844
1.032 0.941 1.002 1.123 1.281 1.472 1.728 2.308 2.874
1.013 0926 0986 1.111 1.278 1.472 1.737 2.331 2.957
1.003 0.920 0.982 1.118 1.301 1.512 1.815 2.473 3.180

3.601 3.188 3.110 3.074 3.050 3.091 3.148 3.294 3.461
3.092 2.740 2.696 2.703 2.733 2.827 2.942 3.169 3.367
2.710 2.408 2.384 2.413 2472 2.594 2.745 3.037 3.267
2.448 2.181 2.164 2.200 2.272 2.406 2.579 2.922 3.180
2.265 2.020 2.003 2.041 2.121 2.263 2.454 2.841 3.128
2.133 1903 1.885 1.925 2.014 2.165 2.370 2.795 3.113
2.036 1.819 1.801 1.845 1.945 2.105 2.319 2.775 3.124
1.967 1.759 1.743 1.795 1.908 2.074 2.299 2.792 3.175
1.924 1.722 1.709 1.772 1.901 2.082 2.340 2.907 3.342
1.910 1.709 1.702 1.783 1.940 2.165 2.514 3.211 3.723

2478 2249 2.151 2.049 1.932 1.836 1.741 1.689 1.796
2.288 2.080 2.004 1.928 1.840 1.771 1.700 1.674 1.788
2.112 1.928 1.871 1.815 1.750 1.699 1.647 1.645 1.766
1.968 1.804 1.759 1.717 1.666 1.630 1.593 1.614 1.741
1.852 1.703 1.665 1.632 1.594 1.571 1.549 1.591 1.725
1.759 1.620 1.587 1.562 1.536 1.526 1.517 1.578 1.719
1.682 1.554 1.526 1.508 1.493 1.493 1494 1.571 1.720
1.621 1.501 1.478 1.468 1.463 1471 1480 1.575 1.734
1.575 1.462 1443 1.441 1.447 1464 1489 1.617 1.792
1.545 1.436 1.423 1.431 1.453 1493 1554 1.730 1.927
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Table 11 Dimensionless stress intensity factors for double corner cracks at a hole under
remote tension, r/t=1.5

a/c  alt ¢°0.1 113 225 338 450 563 67.5 825 89.9
0.2

01 1.642 1.633 2.004 2.324 2.593 2.836 3.036 3.255 3.346
1 1.080 1.087 1.346 1.600 1.855 2.132 2.432 2.896 3.141
2 0.879 0.880 1.083 1.290 1.505 1.750 2.048 2.617 2.995
.3 0.784 0.788 0.962 1.142 1.328 1.539 1.813 2.412 2.893
4 0734 0.740 0.896 1.061 1.228 1.418 1.674 2.276 2.843
5 0.705 0.713 0.859 1.015 1.175 1.357 1.603 2.201 2.844
6 0.685 0.695 0.836 0.992 1.155 1.337 1.582 2.176 2.888
0.4 01 2.378 2.133 2.305 2.518 2.716 2.920 3.092 3.297 3.396
1 1.861 1.671 1.822 2.026 2.245 2.491 2.737 3.080 3.249
2 1.551 1.395 1.525 1.710 1.922 2.172 2.448 2.886 3.124
3 1.371 1.236 1.348 1.514 1.711 1.950 2.233 2.732 3.031
4 1.258 1.137 1.233 1.385 1.570 1.800 2.086 2.629 2.985
5 1.182 1.071 1.157 1.299 1.481 1.708 1.999 2.578 2.990
6 1.131 1.027 1.106 1.246 1.432 1.662 1.959 2.568 3.034
7 1.099 1.000 1.075 1.219 1.415 1.653 1.963 2.612 3.137
8 1.082 0.988 1.062 1.216 1.428 1.68 2.044 2.789 3.397
9 1.083 0.993 1.069 1.241 1.486 1.804 2.294 3.242 3.986
1.0 01 3.704 3.279 3.197 3.158 3.129 3.168 3.224 3.369 3.538
1 3.334 2949 2.891 2.882 2.894 2972 3.068 3.269 3.458
2 3.014 2670 2.631 2.644 2.683 2.785 2.912 3.162 3.372
3 2.766 2.456 2.427 2.451 2.506 2.625 2.775 3.069 3.299
4 2575 2.289 2.265 2.296 2.363 2.498 2.671 3.008 3.260
5 2428 2161 2.139 2.176 2.258 2.410 2.605 2.983 3.259
6 2315 2.063 2.045 2.090 2.189 2.357 2.570 2.985 3.286
7 2229 1990 1.977
8 2173 1943 1.934
9 2.148 1.922 1.923
0
1
2
3
4
5
6
7
8
9

2.151 2.334 2.566 3.028 3.360
2.144 2.350 2.628 3.183 3.565
2.188 2.451 2.839 3.556 4.017

1.977 1.877 1.779 1.725 1.834
1.907 1.826 1.745 1.709 1.822

O§O
— W
g

2.0 1 2541 2.305 2.204
2.407 2.183 2.096
2.273 2.066 1.993 1.837 1.771 1.703 1.684 1.801

2.155 1.964 1.902 1.771 1.717 1.662 1.660 1.781

2.054 1.876 1.821 1.712 1.671 1.630 1.645 1.772

1.968 1.801 1.753 1. 1.665 1.638 1.610 1.642 1.774

1.894 1.738 1.696 1.663 1.632 1.617 1.599 1.645 1.785

1.832 1.686 1.651 1.629 1.610 1.605 1.598 1.663 1.810

1.785 1.647 1.619 1.607 1.602 1.611 1.623 1.724 1.887

1.754 1.620 1.601 1.603 1.617 1.655 1.711 1.865 2.053
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Table 12 Dimensionless stress intensity factors for double corner cracks at a hole under
remote tension, r/t=2.5

a/c at ¢°0.1 113 225 338 450 563 675 825 899

0.2

[y

1.715 1.705 2.089 2.417 2.688 2.929 3.122 3.326 3.411
1.280 1.274 1.576 1.861 2.134 2.415 2.694 3.078 3.260
1.042 1.040 1.287 1.532 1.781 2.056 2.362 2.860 3.136
0.913 0914 1.127 1.342 1566 1.821 2.127 2.689 3.045
0.836 0.839 1.029 1.224 1.429 1.668 1.971 2.577 3.006
0.786 0.791 0.965 1.149 1.346 1.580 1.883 2.523 3.022
0.754 0.761 0.924 1.104 1.304 1.539 1.848 2.517 3.085
0.733 0.742 0.900 1.083 1.292 1.537 1.861 2.576 3.218
0.723 0.734 0.890 1.084 1.310 1.578 1.956 2.785 3.536
0.721 0.738 0.894 1.109 1.368 1.704 2.234 3.322 4.258

© VOONONVMEWN=O

[amry

0.4 2.449 2.197 2.372 2.588 2.787 2.990 3.160 3.361 3.457
2.086 1.869 2.032 2.244 2.461 2.698 2.920 3.211 3.350
1.810 1.624 1.773 1.975 2.195 2.445 2.700 3.067 3.251
1.618 1.455 1.590 1.779 1.993 2.246 2.520 2.947 3.172
1.482 1.335 1.457 1.634 1.844 2.099 2.391 2.873 3.140
1.383 1.248 1.360 1.530 1.740 2.003 2.315 2.849 3.160

©1.312 1.186 1.291 1.459 1.678 1.952 2.283 2.869 3.224
1.262 1.143 1.244 1.417 1.650 1.940 2.296 2.949 3.357
1.230 1.117 1.217 1.401 1.655 1974 2.393 3.182 3.670

1.219 1.112 1.213 1.418 1.711 2.105 2.683 3.740 4.361

3.784 3.348 3.264 3.222 3.191 3.228 3.282 3.427 3.598
3.545 3.130 3.060 3.039 3.034 3.096 3.176 3.355 3.537
3.312 2.927 2.873 2.868 2.884 2.965 3.066 3.277 3.471
3.112 2.755 2.711 2.718 2.748 2.844 2.966 3.209 3.416
2.944 2.609 2.572 2.588 2.633 2.748 2.894 3.173 3.395
2.805 2.489 2.458 2.483 2.547 2.686 2.858 3.175 3.415
2.690 2.392 2.367 2.405 2.493 2.656 2.851 3.207 3.467
2.600 2.316 2.300 2.355 2.467 2.654 2.877 3.285 3.573
2.536 2.264 2.257 2.332 2.474 2.694 2.976 3.493 3.829
2.507 2.240 2.246 2.347 2.534 2.829 3.246 3.953 4.372

2.588 2.347 2.244 2.136 2.011 1910 1.809 1.753 1.864
2.505 2.268 2.172 2.075 1963 1.873 1.783 1.739 1.851
2.414 2.188 2.103 2.016 1.915 1.834 1.753 1.719 1.834
2.329 2.115 2.037 1.959 1.868 1.796 1.724 1.702 1.819
2.253 2.049 1977 1907 1.826 1.765 1.705 1.696 1.816
2.186 1.990 1.925 1.863 1.795 1.747 1.699 1.702 1.827
2.126 1.941 1.882 1.830 1.776 1.742 1.702 1.718 1.849
2.075 1.899 1.849 1.809 1.769 1.746 1.717 1.750 1.889
2.036 1.868 1.826 1.799 1.775 1.769 1.763 1.832 1.987
2.013 1.850 1.819 1.807 1.808 1.836 1.880 2.005 2.187

1.0
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Table 13 Dimensionless stress intensity factors for double corner cracks at a hole under
wedge loading, r/t=0.1

alc at ¢°0.1 11.3 225 338 450 563 67.5 825 899
0.2 0.01 0.232 0.238 0.300 0.378 0.471 0.590 0.752 1.100 1.373
04 001 0.529 0.482 0.536 0.618 0.721 0.850 1.007 1.285 1.451

1.0 001 1.228 1.098 1.094 1.116 1.153 1.223 1.309 1.468 1.588
0.1 0403 0.374 0.382 0.418 0.484 0.566 0.692 0.984 1.308

0.2 0244 0.226 0.223 0.244 0.291 0.344 0.439 0.699 1.095
20 0.01 0993 0.909 0.884 0.861 0.833 0.813 0.792 0.796 0.857
0.1 0461 0445 0457 0474 0.496 0.519 0.550 0.651 0.771
0.2 0306 0.297 0303 0.316 0.338 0.359 0.394 0.500 0.657
0.3 0.233 0.225 0.223 0.232 0.254 0.273 0.308 0.416 0.598
04 0.191 0.182 0.177 0.18 0.205 0.220 0.253 0.359 0.554

Table 14 Dimensionless stress intensity factors for double corner cracks at a hole under
wedge loading, r/t=0.25

alc at ¢°0.1 11.3 225 338 450 563 675 825 89.9

0.2 0.402 0.405 0.508 0.617 0.735 0.873 1.034 1.305 1.457
0.066 0.077 0.088 0.118 0.163 0.227 0.343 0.697 1.222

0.763 0.690 0.760 0.856 0.963 1.089 1.221 1.415 1.513
0.214 0.205 0.225 0.275 0.351 0.453 0.607 0.964 1.331
0.118 0.120 0.124 0.152 0.203 0.270 0.389 0.722 1.191

= O
[rd

0.4

Pk

1.0

[y

1.474 1311 1.293 1.297 1.311 1.357 1.413 1.521 1.617
0.719 0.658 0.675 0.719 0.790 0.888 1.021 1.301 1.520
0.487 0.449 0.461 0.501 0.570 0.657 0.786 1.083 1.380
0.367 0.340 0.345 0.377 0.439 0.514 0.635 0.919 1.264
0.300 0.278 0.277 0.301 0.356 0.421 0.532 0.809 1.191
0.257 0.238 0.233 0.254 0.303 0.360 0.462 0.735 1.146

1.090 0.993 0.958 0.922 0.879 0.846 0.812 0.799 0.854
0.692 0.656 0.665 0.677 0.687 0.702 0.718 0.779 0.867
0.522 0.506 0.519 0.536 0.555 0.576 0.603 0.696 0.807
0.427 0.416 0.427 0.442 0.462 0.484 0.515 0.618 0.748
0.363 0.353 0.360 0.375 0.396 0.418 0.453 0.563 0.710
0.316 0.307 0.311 0.324 0.348 0.372 0.410 0.522 0.685
0.281 0.273 0.274 0.287 0.313 0.337 0.377 0.488 0.664
0.256 0.247 0.247 0.260 0.286 0.310 0.352 0.462 0.649
0.237 0.227 0.227 0.241 0.267 0.291 0.336 0.451 0.655
0.223 0.213 0.213 0.229 0.256 0.281 0.333 0.451 0.686

2.0
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Table 15 Dimensionless stress intensity factors for double corner cracks at a hole under
wedge loading, r/t=0.5

alc at ¢°0.1 113 225 338 450 563 675 825 899
0.2

fonery

0.564 0.564 0.702 0.836 0.968 1.107 1.249 1.450 1.547
0.159 0.166 0.206 0.265 0.341 0.442 0.596 0.968 1.364
0.082 0.093 0.108 0.143 0.191 0.259 0.380 0.733 1.249

0.949 0.855 0.933 1.035 1.141 1.258 1.369 1.518 1.589
0.406 0.373 0.414 0.485 0.581 0.704 0.869 1.209 1.462
0.251 0.236 0.258 0.310 0.388 0.490 0.645 0.998 1.357
0.179 0.173 0.184 0.222 0.285 0.370 0.510 0.853 1.273
0.141 0.139 0.144 0.174 0.226 0.296 0.420 0.756 1.219

1.643 1.459 1.430 1.424 1.424 1.457 1.499 1.588 1.676
1.039 0.938 0.948 0.986 1.045 1.137 1.252 1472 1.631
0.783 0.711 0.724 0.765 0.832 0.927 1.055 1.329 1.543
0.638 0.581 0.591 0.630 0.696 0.786 0.914 1.205 1.462
0.540 0.492 0.498 0.534 0.600 0.686 0.815 1.112 1.406
0.468 0.427 0.431 0.464 0.530 0.614 0.744 1.044 1.371
0.416 0.380 0.380 0.412 0.478 0.561 0.691 0.991 1.347
0.378 0.345 0.344 0.375 0.441 0.521 0.652 0.955 1.337
0.352 0.320 0.319 0.350 0.417 0.495 0.632 0.950 1.370
0.336 0.305 0.304 0.338 0.408 0.491 0.649 0.993 1.473

1.166 1.061 1.019 0.976 0.925 0.884 0.842 0.823 0.876
0.900 0.837 0.830 0.824 0.814 0.810 0.804 0.830 0.902
0.735 0.696 0.701 0.707 0.712 0.722 0.733 0.789 0.877
0.632 0.603 0.610 0.621 0.631 0.647 0.667 0.744 0.843
0.561 0.536 0.543 0.555 0.570 0.589 0.615 0.707 0.817
0.507 0.485 0.492 0.504 0.523 0.545 0.576 0.678 0.800
0.465 0.445 0.451 0465 0.486 0.511 0.545 0.653 0.785
0.431 0412 0.418 0.434 0.458 0.484 0.521 0.633 0.776
0.403 0.386 0.392 0.409 0.436 0.464 0.506 0.627 0.784
0.382 0.365 0.372 0.392 0.423 0.455 0.510 0.640 0.819

04
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1.0
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Table 16 Dimensionless stress intensity factors for double corner cracks at a hole under
wedge loading, r/t=1.0

alc  alt ¢°0.1 11.3 225 338 450 563 675 825 899

0.2 0.723 0.721 0.8900 1.044 1.184 1.320 1.444 1.598 1.667
0.307 0.311 0.388 0.479 0.585 0.715 0.888 1.248 1.522
0.178 0.185 0.229 0.292 0.374 0.482 0.644 1.023 1.419
0.119 0.128 0.154 0.201 0.265 0.354 0.500 0.874 1.342
0.089 0.100 0.116 0.152 0.204 0.276 0.405 0.775 1.295

1.117 1.003 1.089 1.197 1.303 1.415 1.515 1.640 1.700
0.642 0.581 0.642 0.733 0.845 0.984 1.149 1.435 1.604
0.456 0.415 0458 0.532 0.631 0.757 0.925 1.266 1.518
0.348 0.320 0.351 0.414 0.502 0.618 0.781 1.136 1.449
0.277 0.258 0.280 0.334 0.414 0.521 0.682 1.043 1.405
0.228 0.216 0.232 0.278 0.353 0.454 0.613 0.979 1.384
0.196 0.188 0.199 0.240 0.311 0.407 0.564 0.936 1.378
0.174 0.169 0.176 0.215 0.283 0.376 0.532 0.914 1.394
0.158 0.155 0.161 0.199 0.268 0.360 0.523 0.936 1.468

1.815 1.608 1.572 1.558 1.549 1.575 1.610 1.691 1.780
1.394 1.244 1.238 1.259 1.297 1.370 1.458 1.623 1.750
1.136 1.018 1.022 1.055 1.108 1.196 1.309 1.528 1.689
0.973 0.874 0.879 0.914 0.973 1.065 1.187 1.440 1.630
0.858 0.771 0.775 0.811 0.873 0.966 1.095 1.373 1.591
0.770 0.692 0.696 0.732 0.798 0.895 1.030 1.326 1.570
0.701 0.631 0.635 0.672 0.743 0.842 0.982 1.291 1.560
0.646 0.582 0.586 0.627 0.703 0.804 0.950 1.273 1.569
0.604 0.545 0.550 0.594 0.676 0.782 0.943 1.296 1.629
0.576 0.519 0.526 0.576 0.668 0.789 0.989 1.394 1.782

1.261 1.145 1.098 1.047 0.989 0.942 0.895 0.870 0.926
1.101 1.009 0.982 0.95% 0.924 0.901 0.875 0.877 0.942
0.969 0.8906 0.883 0.870 0.853 0.844 0.834 0.856 0.930
0.870 0.810 0.803 0.798 0.790 0.789 0.790 0.831 0.912
0.795 0.742 0.738 0.737 0.736 0.743 0.753 0.810 0.898
0.736 0.688 0.686 0.689 0.694 0.707 0.724 0.794 0.890
0.688 0.645 0.644 0.650 0.660 0.678 0.701 0.782 0.885
0.648 0.609 0.610 0.619 0.635 0.656 0.682 0.774 0.885
0.617 0.581 0.583 0.596 0.616 0.641 0.675 0.784 0.906
0.594 0.559 0.564 0.581 0.608 0.642 0.693 0.824 0.962
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Table 17 Dimensionless stress intensity factors for double corner cracks at a hole under
wedge loading, r/t=1.5

a/c alt ¢°0.1 11.3 225 338 450 563 675 8.5 899

0.2 0.797 0.794 0.978 1.140 1.283 1.416 1.533 1.669 1.729
0.405 0.407 0.508 0.617 0.739 0.883 1.060 1.390 1.602
0.261 0.265 0.331 0.413 0.513 0.639 0.812 1.189 1.513
0.182 0.189 0.234 0.299 0.383 0.494 0.659 1.045 1.443
0.136 0.145 0.176 0.228 0.300 0.399 0.556 0.944 1.398
0.108 0.119 0.141 0.184 0.247 0.336 0.48 0.878 1.378
0.090 0.102 0.118 0.156 0.213 0.295 0.438 0.835 1.379

1.193 1.071 1.160 1.271 1.377 1.487 1.584 1.702 1.758
0.785 0.707 0.778 0.879 0.997 1.137 1.294 1.541 1.674
0.590 0.534 0.588 0.675 0.783 0.919 1.088 1.402 1.602
0.473 0.430 0.473 0.548 0.648 0.776 0.945 1.289 1.543
0.391 0.358 0.392 0.459 0.553 0.675 0.845 1.206 1.504
0.330 0.305 0.333 0.394 0.484 0.604 0.777 1.151 1.489
0.285 0.266 0.289 0.346 0.434 0.553 0.730 1.116 1.493
0.251 0.237 0.256 0.311 0.400 0.519 0.702 1.105 1.523
0.228 0.217 0.233 0.288 0.378 0.501 0.701 1.147 1.621
0.215 0.206 0.221 0.277 0.374 0.512 0.758 1.293 1.857

=] O\LIIAUJN'—‘S

[y

04

1.0

b

1.898 1.681 1.641 1.623 1.611 1.634 1.666 1.746 1.836
1.576 1.400 1.383 1.393 1.418 1478 1.551 1.690 1.805
1.342 1.196 1.191 1.215 1.258 1.336 1.434 1.620 1.761
1.179 1.053 1.053 1.082 1.133 1.219 1.331 1.552 1.714
1.059 0.947 0.948 0.979 1.035 1.127 1.250 1.499 1.682
0.966 0.864 0.866 0.899 0.961 1.060 1.192 1.464 1.669
0.892 0.799 0.801 0.838 0.908 1.012 1.151 1.444 1.671
0.833 0.747 0.751 0.793 0.869 0.979 1.127 1.444 1.6%4
0.788 0.707 0.713 0.761 0.846 0.964 1.132 1492 1.778
0.757 0.680 0.689 0.745 0.844 0.985 1.201 1 1.970

3
1.310 1.189 1.138 1.084 1.023 0.973 0.923 0.896 0.953
1.194 1.087 1.051 1.015 0.973 0.940 0.906 0.897 0.961
1.087 0.997 0.972 0.949 0.920 0.899 0.878 0.886 0.955
1.001 0.922 0905 0.889 0.869 0.857 0.845 0.868 0.943
0.931 0.860 0.847 0.836 0.824 0.820 0.817 0.853 0.933
0.873 0.809 0.799 0.792 0.786 0.790 0.795 0.844 0.929
0.825 0.766 0.758 0.757 0.757 0.767 0.779 0.838 0.930
0.785 0.731 0.726 0.728 0.735 0.750 0.768 0.840 0.938
0.753 0.702 0.700 0.707 0.720 0.742 0.769 0.861 0.970
0.730 0.681 0.682 0.695 0.718 0.751 0.799 0.919 1.043
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Table 18 Dimensionless stress intensity factors for double corner cracks at a hole under
wedge loading, r/t=2.5

alc at ¢°0.1 113 225 338 450 563 675 825 899

0.2 0.864 0.860 1.056 1.226 1.370 1.501 1.610 1.731 1.782
0.530 0.529 0.659 0.791 0.928 1.083 1.256 1.536 1.689
0.378 0.379 0474 0.579 0.698 0.841 1.022 1.373 1.613
0.287 0.292 0.364 0.452 0.557 0.689 0.867 1.246 1.552
0.227 0.232 0.289 0.365 0.460 0.584 0.761 1.156 1.517
0.184 0.191 0.236 0.303 0.391 0.511 0.689 1.098 1.507
0.154 0.162 0.199 0.259 0.343 0.460 0.641 1.064 1.520
0.132 0.142 0.172 0.228 0.310 0.426 0.612 1.058 1.564
0.118 0.130 0.155 0.208 0.290 0.408 0.611 1.112 1.688
0.109 0.123 0.144 0.199 0.286 0.417 0.668 1.288 1.983

1.259 1.129 1.221 1.334 1.441 1.550 1.643 1.755 1.809
0.951 0.854 0.935 1.045 1.164 1.302 1.444 1.647 1.749
1
1

[l

0.4

[y

0.760 0.685 0.753 0.853 0.970 1.112 1.275 1.541 1.690
0.638 0.576 0.635 0.724 0.835 0.975 1.145 1.451 1.640
0.551 0.499 0.549 0.631 0.737 0.874 1.050 1.387 1.612
0.483 0.440 0.483 0.560 0.665 0.804 0.987 1.349 1.610
0.431 0.393 0.432 0.507 0.614 0.756 0.946 1.332 1.628
0.389 0.357 0.393 0.467 0.578 0.724 0.927 1.342 1.677
0.357 0.330 0.363 0.440 0.556 0.713 0.942 1.418 1.809
0.336 0.313 0.344 0.426 0.555 0.738 1.034 1.631 2.109

1.968 1.742 1.699 1.679 1.664 1.685 1.716 1.794 1.885
1.755 1.553 1.526 1.526 1.536 1.583 1.641 1.757 1.863
1.569 1.392 1.377 1.390 1.416 1.480 1.557 1.707 1.829
1.424 1.266 1.257 1.276 1.313 1.386 1.480 1.658 1.795
1.308 1.165 1.159 1.182 1.227 1.310 1.418 1.624 1.776
1.215 1.083 1.079 1.107 1.161 1.255 1.376 1.608 1.776
1.140 1.017 1.016 1.049 1.113 1.218 1.351 1.608 1.793
1.079 0964 0.966 1.007 1.081 1.196 1.342 1.629 1.835
1.033 0.924 0.930 0979 1.066 1.194 1.367 1.711 1.948
1.003 0.899 0.909 0969 1.076 1.236 1.470 1.909 2.197

1.351 1.225 1.172 1.116 1.052 0.999 0.947 0.919 0.977
1.278 1.161 1.116 1.071 1.020 0.979 0.937 0.919 0.982
1.204 1.097 1.061 1.026 0.984 0.951 0.918 0.911 0.977
1.138 1.040 1.011 0.982 0.947 0.921 0.896 0.900 0.969
1.081 0.990 0.965 0.941 0.913 0.895 0.877 0.892 0.965
1.031 0.946 0.925 0.906 0.885 0.875 0.866 0.891 0.967
0.988 0.909 0.891 0.877 0.864 0.862 0.859 0.894 0.975
0.951 0.878 0.863 0.856 0.850 0.854 0.858 0.904 0.991

0.841

0.835

1.0

2.0

Pt

0.922 0.853 0.842 0.843 0.856 0.871 0.939 1.036
0.901 0.835 0.829 0.850 0.879 0.919 1.017 1.130
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Fig.1 Double corner cracks at a hole under remote tension

Ya
S VI Tt
'! N
axf °y Nfax Y,
8 2r c ;l X

Fig. 2 Decomposition of the corner cracked body into
(a) a-slice, (b) c-slice
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Fig.3 O<k <, (a) a-slice, (b) c-slice.
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Fig.4 k=0, (a) a-slice, (b) c-slice.
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(a) (b)

Fig.6 Definition of crack parameters
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Fig. 7 Points on the crack surface where
displacements are evaluated.
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COD(0,0)

*

Crack face displacement
----- e Corner cracks
— Through cracks

Mall & Newman [48]

6|

S| #=2.5 a/t=0.8 e aje=1 -
rt=2.5 at=0.8 - .
a/lc=1,2,5,1020,4080 ---../

4 ( right to left)
cIr=(at)/(alc)(rh) |

3 - ‘ ‘ j ‘ o ! ‘ , ) ) . | .

0 0.1 0.2 0.3 0.4
c/r

Fig.23 Normalized crack mouth displacement under remote tension
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Fig.B1. Schematic representation of the interpolation function.
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